

Presentation of Recent Results from DTU

Fire-Induced Glass Breakage in Windows

Who am I?

Hjalte Bengtsson (35)

- PhD student at DTU (2023-2026)
- B.Sc. (2011), M.Sc. (2014) in civil engineering from DTU
- Experience:
 - Fire safety consultant at Sweco DK+NO (2014-2023)
 - Technical manager (fire safety) at Sweco DK (2019-2023)
 - Fire fighter at DEMA (2012)
 - Safety steward at concert and sports venues (2009-2012)

Pictures: Energy island (North Sea); Rigshospitalet (Denmark); Nasjonaltheatret stasjon (Norway), Mjøstårnet (Norway)

Contact: hjab@dtu.dk

Agenda

- Background and motivation
 - What is happening when glass breaks?
 - Why is it important?
- Literature review
 - What do we know?
 - What do we know, we do not know?
 - What do we not know, we do not know?
- Recent and current work at DTU
 - What new results do we have?
 - What are we planning?
- Conclusions

Picture Al generated by Dall-E 3

Background and motivation

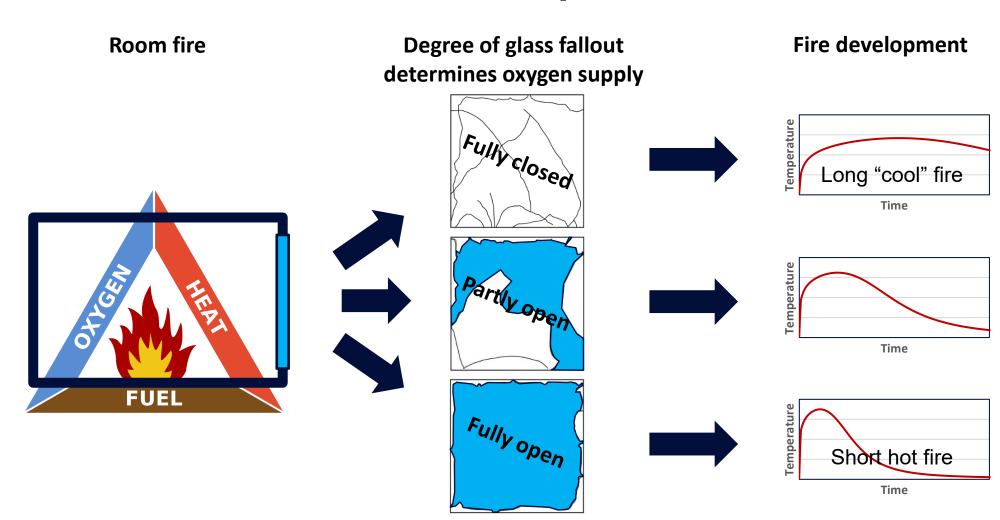
Motivation

- High-rise timber structures must avoid collapse during a full fire duration
- Parametric fires can be used for this, but the opening factor must be known
- See e.g. Brandon et al. (2021), and Isaksen & Hagen (2023)

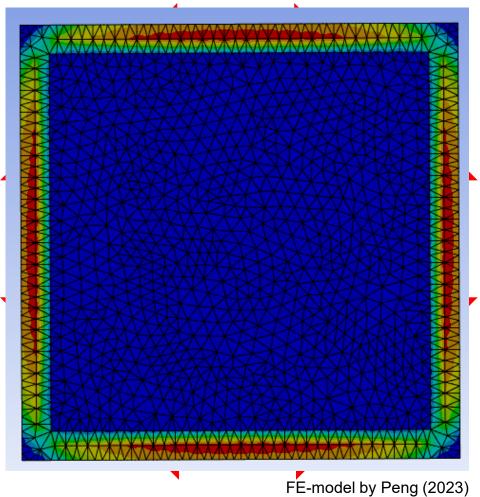
Picture: Mjøstårnet (Norway)

SFPE Denmark - Fire-induced glass breakage in windows

Motivation

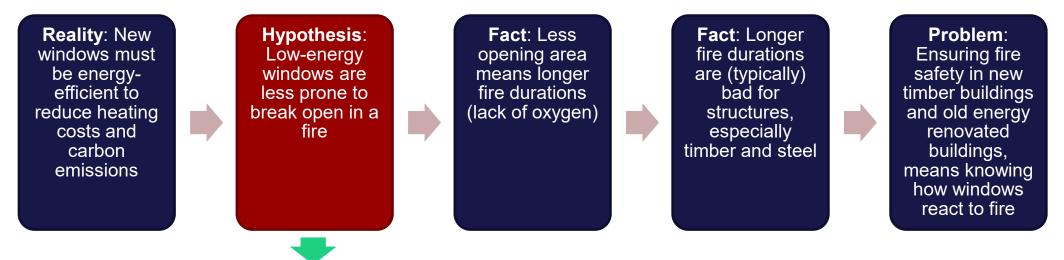

- Current practices for fire testing of materials are based on 100-year-old assumptions on ventilation conditions
- Modern windows are increasingly complex, and research is not up-to-date:
 - Larger windows need tougher glass
 - Increasing number of layers
 - Energy coatings
 - More airtight buildings → higher over-pressure
 - → more mechanical load on windows

Furnace fire test anno 1902


Fundamentals of fire development

Fundamentals of fire-induced glass breakage

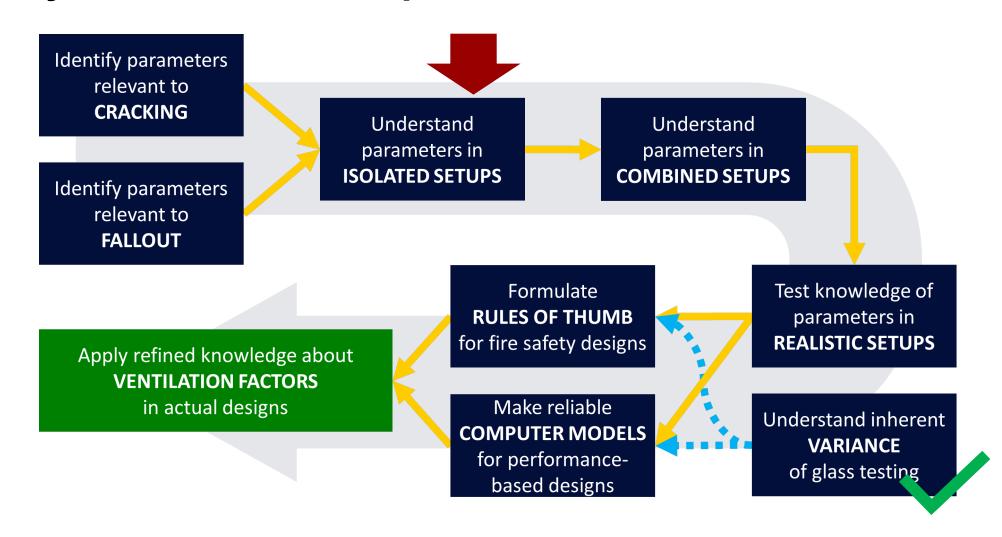
- Emmons (1986) first described fireinduced windows breakage
- Window glass typically break due to:
 - Hot exposed area in centre leads to thermal expansion
 - Cold shaded area around edges limits expansion, creating tension
 - Glass has low tensile strength; thus, breakage happens at the edges



My research

"Predicting fire development from breakage of modern windows" (working title)

Supervisors: Lars S. Sørensen & Luisa Giuliani, DTU Construct

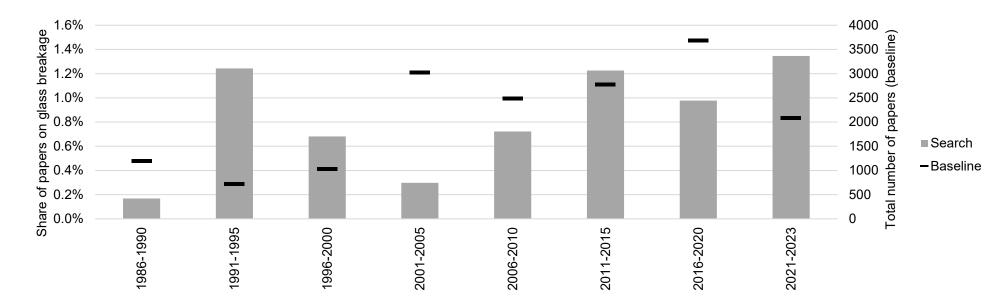

Research questions:

- How do we assess realistic opening areas in buildings in order to design buildings in a fire safe way?
- What does fire development mean for window breakage (feedback loop)?

13-05-2024 Technical University of Denmark SFPE Denmark SFPE Denmark SFPE Denmark - Fire-induced glass breakage in windows

My research roadmap

13-05-2024 Technical University of Denmark


Literature review

13-05-2024 Technical University of Denmark

Literature review

- Literature study of 134 scientific papers and research reports (1986-2023)
 - 10 review papers
 - 31 papers on numerical modelling
 - 66 papers on experiments (some also include numerical modelling)
 - 27 papers of secondary relevance (e.g. applications of knowledge, glass façades, non-fire related thermal breakage

^{*} Baseline from Scopus papers indexed under "fire safety" and/or "fire protection"

12

13-05-2024 Technical University of Denmark - Fire-induced glass breakage in windows

Overview of parameters

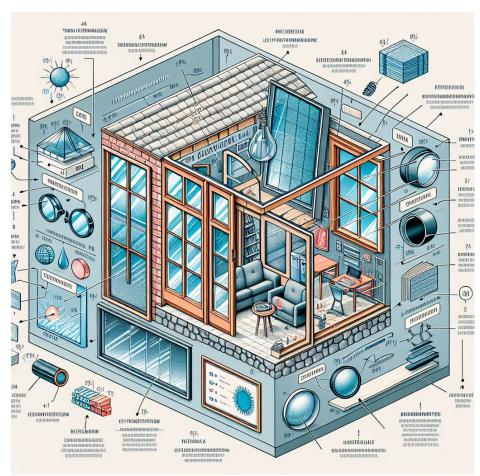
- 17 parameters identified
- Four main groups of parameters established

Geometric properties	Material properties	Fire effects	Environmental effects
Size	Type of glass	Heating rate	Humidity
Form/shape	Coatings	Heating curve	Wind
Thickness	Lamination	Exposure type	
No. of glass layers	Frame type/support	Over-pressure in fire room	
Gap between layers	Stress history		
Shading width (rabbet)			

13

Geometric parameters

- Size: Area of glass
- Form/shape: Square, rectangular, circular etc.
- Thickness: Typically, 4 or 6 mm
- No. of layers: Single, double, triple, (quadruple) pane
- Gap between layers: Distance, gas filling (air, argon, krypton)
- Shading width: Width of covered area around edges (in Denmark 15 mm, typically)



Picture AI generated by Dall-E 3

Material properties

- Type of glass: Annealed, toughened
- Coatings: Low-energy coating, solar shading, reflective foils
- Lamination: Lamination of two, three or more panes. Type of lamination foil
- Frame type/support: Frame of wood, metal, combination
- Stress history: New or old windows

Picture AI generated by Dall-E 3

15

Fire effects

- Heating rate: Incident heat flux
- Heating curve: Constant heat flux, growing fire
- Exposure type: Radiant, flame, smoke, uniform/non-uniform heating
- Over-pressure in fire room: Mechanical force on the inside of window in combination with fire effects

Picture AI generated by Dall-E 3

Environmental effects

- **Humidity**: Humidity of surrounding air
- Wind: Mechanical force on the outside of window in combination with fire effects

Picture AI generated by Dall-E 3

Level of knowledge

	Parameter	Current know- ledge level
Geometric properties	Size	MEDIUM
	Form/shape	MEDIUM
	Thickness	MEDIUM
	No. of layers	MEDIUM
	Gap between layers	LOW
	Shading width	HIGH
	Type of glass	HIGH
Material properties	Coatings	LOW
	Lamination	HIGH
	Frame type/support	LOW
	Stress history	LOW
Fire effects	Heating rate	HIGH
	Heating curve	MEDIUM
	Exposure type	HIGH
	Over-pressure in fire room	LOW
Environ- mental effects	Humidity	LOW
Envi mel effe	Wind	MEDIUM

- Current level of knowledge assessed based on literature review
- See our paper for references: Bengtsson et al. (2024)

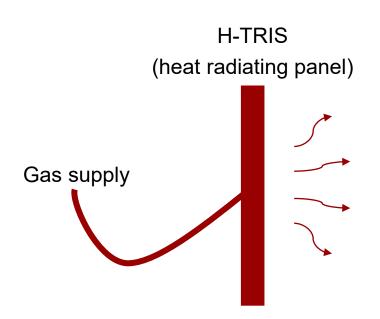
Findings

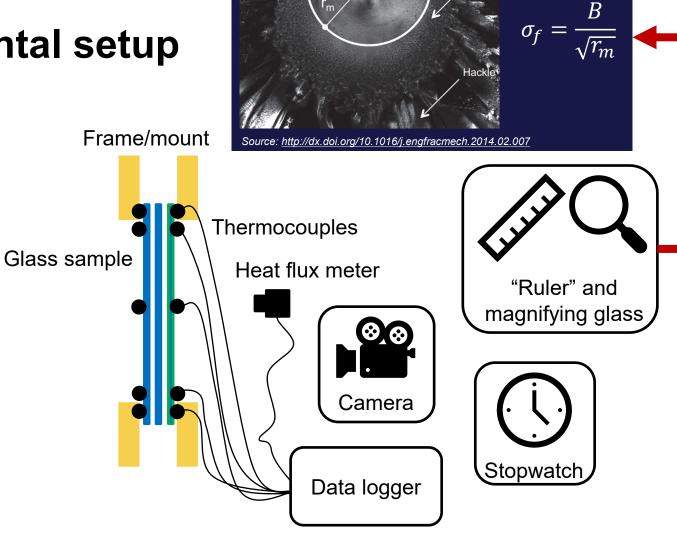
- Many parameters are well-described
- Some parameters need further study
- Combination of parameters are understudied

Unknown unknowns

Picture AI generated by Dall-E 3

13-05-2024 Technical University of Denmark SFPE Denmark SFPE Denmark SFPE Denmark




Recent and current work at DTU

13-05-2024 Technical University of Denmark SFPE Denmark SFPE Denmark SFPE Denmark - Fire-induced glass breakage in windows

General experimental setup

Fracture origin


Mirror

21

13-05-2024 Technical University of Denmark - Fire-induced glass breakage in windows

General experimental setup

22

13-05-2024 **Technical University of Denmark** SFPE Denmark - Fire-induced glass breakage in windows

Shading width at different exposure levels

- Study by Jørgensen et al. (2022)
- Single pane samples
- Four different shading widths:
 10, 15, 20, and 25 mm
- Three different exposure levels:
 5, 10, 15 kW/m²
- Findings: Shading width matters most at low exposure levels

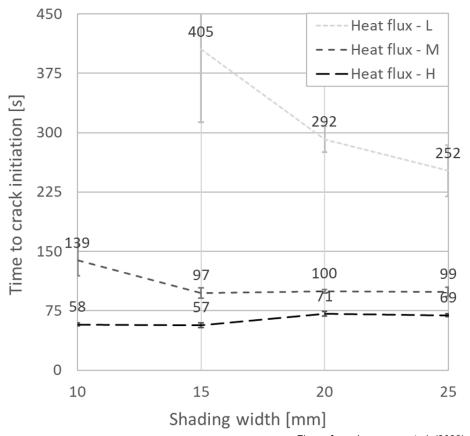


Figure from Jørgensen et al. (2022)

23

13-05-2024 Technical University of Denmark SFPE Denmark - Fire-induced glass breakage in windows

Low-energy windows in growing fires

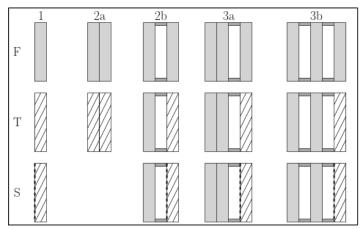
- Study by Seindal & Jensen (2023)
- Studied:
 - Exposure from growing fires on
 - two- and three-layer thermo windows and low-energy windows with
 - different framing materials
- Findings:
 - Frame material had insignificant impact on results
 - Low-energy windows had higher fire resistance
- Supplementary study by Nielsen (2023)
- Findings: Increasing fallout area when applying simulated over-pressure on fire side

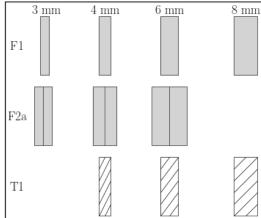
13-05-2024 Technical University of Denmark - Fire-induced glass breakage in windows

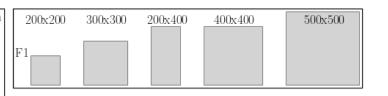
Multi-pane windows and different glass types

Twin studies by Hvidberg (2023) and Peng (2023); see also Peng et al. (2024)

F: Annealed float glass

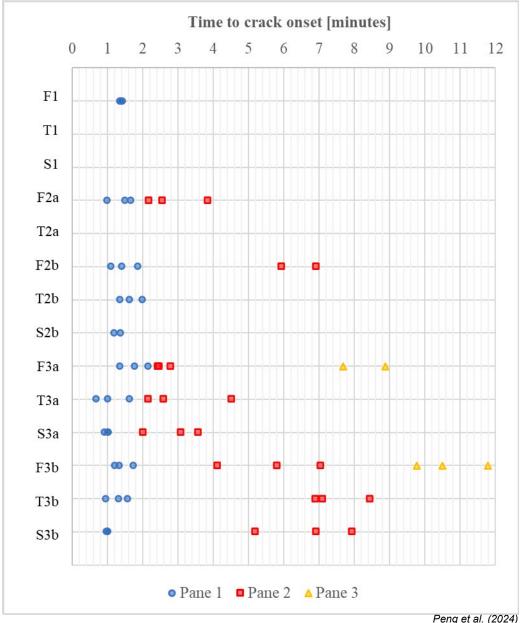

T: **Toughened** float glass


S: Toughened float glass with integrated solar shading


a: Laminated layer

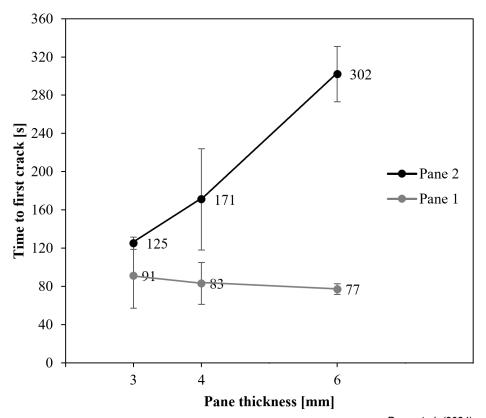
b: Void between all layers

- Test series 1: **Multi-pane assemblies**, 400 x 400 mm, 4 mm thick
- Test series 2: Single pane, 400 x 400 mm, **3-8 mm thick**
- Test series 3: Single pane, **200-500 x 200-500 mm**, 4 mm thick


SFPE Denmark - Fire-induced glass breakage in windows

13-05-2024 Technical University of Denmark

Multi-pane windows


- No toughened panes broke under the exposure of 20 kW/m²
- Time to breakage of 1st pane: 80 ± 21 s
- Time to breakage of first pane independent of lamination
- Time to breakage of second pane significantly different in laminated panes (faster)
- Succeeding annealed panes (nonlaminated) broke roughly 5 minutes and 20 seconds after breakage of previous pane
- Neither toughened glass nor solar shading influenced results of preceding panes

Laminated Panes

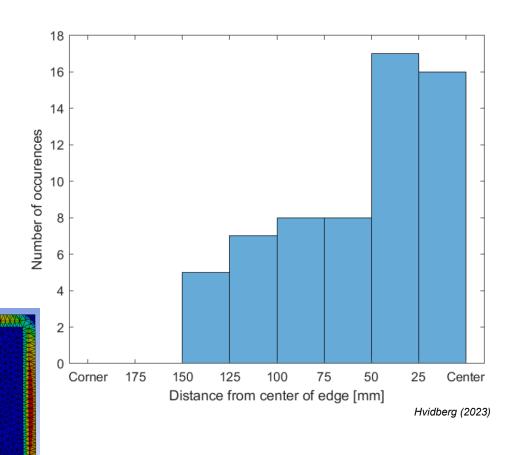
- In general, thickness does not matter for pane 1 in laminated assemblies
- Thickness increases breakage time for pane 2 in laminated assemblies
- No fallout was observed in laminated samples

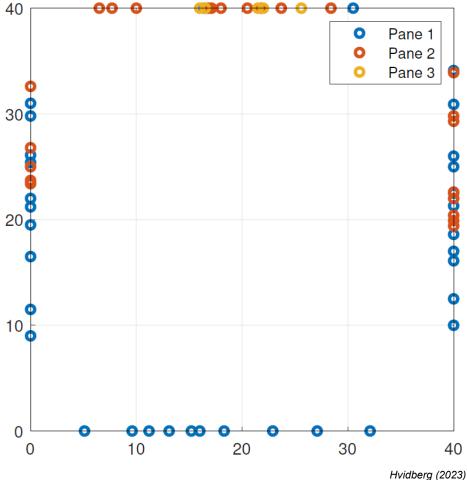
Peng et al. (2024)

27

13-05-2024 Technical University of Denmark SFPE Denmark - Fire-induced glass breakage in windows

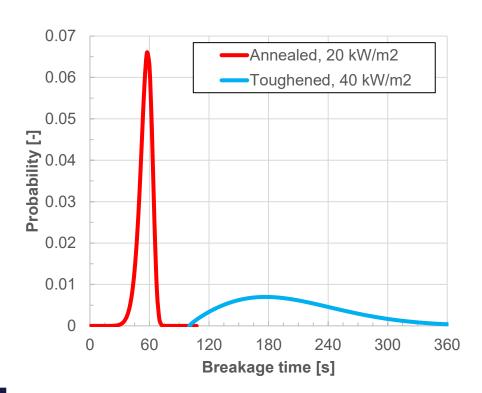
Fallout in Insulated Glazing Units


Sample code	Time to fallout [min:sec]	Fallout fraction (1 st pane) [%]	Sample code	Time to fallout [min:sec]	Fallout fraction (1st pane) [%]
F2b.1	01:25ª	25	F3b.1	05:48 ^b	50
F2b.2	01:52ª	10	F3b.2	07:03 ^b	60
F2b.3	None	0	F3b.3	03:59	80
T2b.1	None	0	T3b.1	06:54 ^b	80
T2b.2	02:00 ^a 05:58	10 90	T3b.2	None	0
T2b.3	22:22	90	T3b.3	07:06 ^b	90
S2b.1	20:35	60	S3b.1	04:21 05:11 ^b	10 80
S2b.2	13:50	80	S3b.2	07:56 ^b	80
S2b.3	13:52	70	S3b.3	06:55 ^b	40


^a Time to 1st crack of pane 1. ^b Time to 1st crack of pane 2.

Peng et al. (2024)

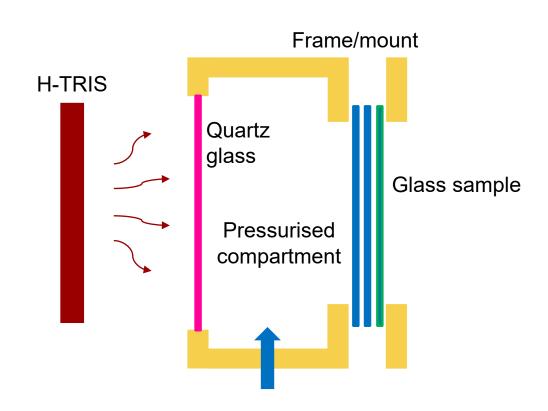
Crack initiation point for multi-pane windows



Variance of fire-induced glass breakage

- Study by Nielsen (2024)
- Test of single pane glass samples:
 - 20 annealed panes
 - 20 toughened panes
- Exposure was 20 kW/m² and 40 kW/m², respectively
- Breakage times:
 - Annealed: 55.8 ± 6.9 s
 - Toughened: 203.4 ± 60.0 s
- Found Weibull distributions for modelling glass breakage with parameters:

Glass type	Scale, η	Shape, β	Location, γ
Annealed	58.649	10.535	-
Toughened	117.089	1.849	100



SFPE Denmark - Fire-induced glass breakage in windows

What's next?

- Mid-scale experimental campaign investigating:
 - Energy coatings
 - Void filling (air and argon)
 - Over-pressure
- Large-scale experiments with realistic window sizes
- Full-scale experiments in actual enclosures fitted with real windows

Conclusion

13-05-2024 Technical University of Denmark

Conclusions

- Glass breakage in windows is a complex topic with many parameters to consider
- We still lack knowledge to accurately predict ventilation factor
- DOs and DON'Ts for applications in designs (as of right now):
 - DON'T model glass breakage at a set temperature
 - DON'T assume that multi-pane windows break at once
 - DO consider temperature gradients in glass
 - DO be careful in assessing fallout area
 - DO test the actual windows in a specific design, if you want to know the actual ventilation factor in your building
- Regarding applications related to structural timber, someone may have to answer: Which is better; using structural timber with lower carbon footprint, or using less energy-efficient windows with higher operational carbon footprint?

33

References

- Bengtsson, H., Giuliani, L., & Sørensen, L. S. (2024): Fire-induced Glass Breakage in Windows: Review of Knowledge and Planning Ahead. In Y. Wang & J. Xiao (Eds.), 8th International Conference on the Applications of Structural Fire Engineering (ASFE) (pp. 21–27). Guangxi University.
- Brandon, D., Sjöström, J., Hallberg, E., Temple, A., & Kahl, F. (2021): Fire Safe implementation of visible mass timber in tall buildings-compartment fire testing. RISE Research Institutes of Sweden.
- Emmons, H. W. (1986): The Needed Fire Science. Fire Safety Science 1, 33-53.
- **Hvidberg, J. L. (2023):** Study on the fire-induced breaking of multi-layered glazing used in modern windows [Master's thesis]. Technical University of Denmark (DTU).
- **Isaksen, L. T., & Hagen, M. (2023):** Fire Safety Engineering of Buildings with Visible Timber Constructions. *World Conference on Timber Engineering*.
- **Jørgensen, J. D., Nielsen, J. H., & Giuliani, L. (2022):** Thermal resistance of framed windows: Experimental study on the influence of frame shading width. *Safety Science, 149*. https://doi.org/10.1016/j.ssci.2022.105683
- Nielsen, A. (2023): Fire testing of Windows [Report]. Technical University of Denmark (DTU).
- **Nielsen, A. (2024):** Experimental study of variance in thermally induced breakage of single-pane glass [Master's thesis], Technical University of Denmark (DTU).
- **Peng, M. (2023):** Experimental and numerical study of thermally exposed window glass panes [Master's thesis]. Technical University of Denmark (DTU).
- Peng, M., Hvidberg, J., Bengtsson, H., & Giuliani, L. (2024): Fire-Induced Cracking of Modern Window Glazing: An Experimental Study. In Y. Wang & J. Xiao (Eds.), 8th International Conference on the Applications of Structural Fire Engineering (ASFE) (pp. 201–206). Guangxi University.

34

Seindal, J. G., & Jensen, T. L. (2023): Energy windows versus traditional double-glazed windows - Fire and breakage properties [Master's thesis]. Technical University of Denmark (DTU).

13-05-2024 Technical University of Denmark SFPE Denmark - Fire-induced glass breakage in windows

#